Blow Blow Blow

Teacher Edition

By: Sarah Meador and Andres Flores

NGSS Alignment:

MS-ESS3-2: Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.

ESS3.B Mapping the history of natural hazards in a region, combined with an understanding of related geologic forces can help forecast the locations and likelihoods of future events.

CCSS Alignment

WHST.6-8.1 Write arguments focused on discipline content.

7.RP.A.1 Recognize and understand proportional relationships between quantities.

Objectives:

- Students will analyze and interpret data from various sources.
- Students will design models, and evaluate their design based on data.
- Students will work cooperatively in teams.
- Students will write arguments to promote their design.

Materials:

- One copy of each map per group (4 maps using links below, or similar data maps)
- 1 cement block for each group
- 1 small toy man for each group
- Popsicle sticks
- Straws
- Construction paper
- Large roll of string
- Plastic bags
- Plastic Wrap
- Straws
- Rulers
- Hot glue gun and cartridges
- Masking tape
EXPLORING I

- Students will analyze tornado data to determine the specific states that are most in need of houses that are built to withstand tornado damage.
- Students will be organized into groups of 4 and given a map showing the average annual number of tornadoes per state within a certain time period. The NOAA map available at http://www1.ncdc.noaa.gov/pub/data/cmb/images/tornado/clim/ann-avg-torn1991-2010.gif is a great resource.
- Students will discuss the data shown in the map, and identify states that they feel are most in need of tornado protection.
- Groups will then be given a map showing the average annual number of tornadoes per 10,000 square miles. The NOAA map available at http://www1.ncdc.noaa.gov/pub/data/cmb/images/tornado/clim/avg-eff0-eff5-torn1991-2010.gif is a great resource.
- Groups will re-evaluate their previous findings, and redraft their list of identified states that are most in need of tornado protection.
- Groups will then be given a map showing the average annual number of EF3-EF5 tornadoes per state. The NOAA map available at http://www1.ncdc.noaa.gov/pub/data/cmb/images/tornado/clim/totavg-eff3-eff5-torn1991-2010.gif is a great resource.
- Students will discuss the data shown in the map, and redraft their list of identified states that are most in need of tornado protection.
- Groups will then be given a map showing the average annual number of EF3-EF% tornadoes per 10,000 square miles. The NOAA map available at http://www1.ncdc.noaa.gov/pub/data/cmb/images/tornado/clim/avg-eff3-eff5-torn1991-2010.gif is a great resource.
- Students will discuss the data shown in the map, and redraft their list of identified states that are most in need of tornado protection.

CONNECTING I

- What did you observe?
- Did you change your list of identified states?
- What made you change your list of identified states?
- What states do you feel are most in need of tornado protection?
- Is there any other information you would like to have in order to redefine your list again?
- How does the construction of buildings compare in states with a high risk of tornadoes versus those with a low risk of tornadoes?
EXPLORING II

- Regroup students into new groups of 4.
- Each group is given one cement block to use as the house’s foundation.
- Groups are given access to the supply table, stocked with materials listed above.
- Groups will be given one small toy man to use as a scale for building a house. The house must be built to the scale of the toy man, but can be any shape or size. Houses must include a roof, door, and window (made from plastic wrap). Groups will need to determine the design of the house as well as how to attach it to the cement in order to withstand a tornado.

CONNECTING II

- What were your biggest design challenges?
- What part of the design was your group most focused on?
- Why do you think your design will withstand the force of the tornado more than the others?
- Was there anything that your group didn’t agree on?
- Are there any other materials that you wished you would have used?

EXPLORING III

- Each group comes up to briefly explain their design, then places their house into the bottom of a deep trash can. Make sure that the small toy man is placed inside the house.
- Set up a camera so that it is facing the inside of the trash can and begin recording.
- Using a leaf blower, blow air at a 30° angle along the inside rim of the trash can. This should create a spiral effect inside the can.
- Repeat with each group, so that a separate video is recorded for each house.
- Watch the videos and students will record their observations in their journal.

CONNECTING III

- What did you observe?
- What happened to the toy man?
- Were there any materials used that seemed to stand up better than the others?
- Were there materials that did not hold up as well?
- Were there any design characteristics that worked or didn’t work?
- If you were to construct a house in real-life, in one of the states found to be in need of tornado protection, would your current design be successful?

APPLYING
- Regroup students into new groups of 4.
- Groups will create a 2-D model to scale (pencil and paper) for a real life house using design elements from the toy house activity that can withstand a tornado.
- Groups may add any additional external features to the house to enhance the protection efforts.
- Groups will need to present their design and explain the features that are included in the design to protect the house from damage.
- Teachers will give an explanation of 3D printing, and its uses in prototyping and manufacturing. More information on 3D printing is available at http://www.eigerlab.org/3dprinter.html as well as from various websites such as http://www.policymic.com/articles/25011/9-seriously-mind-blowing-things-you-can-make-with-a-3d-printer.
- Individuals will then construct a written argument showing why their design is better than all of the others. Students should include in their argument how having a 3-D printed prototype created and tested would help their design to be improved and eventually manufactured and sold to people living in the states determined to need the most tornado protection.

EXPANDING

- Students will research what is currently being done in order to construct homes that can withstand an earthquake.
- Students will research the specific natural hazards that affect the local community.
- Students will research the efforts currently being made in order to predict tornadoes more accurately.